Copied to
clipboard

G = C32.19He3order 243 = 35

3rd central extension by C32 of He3

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C32.19He3, C33.19C32, C32.53- 1+2, (C3×C9)⋊2C9, C32⋊C9.5C3, C32.8(C3×C9), (C32×C9).3C3, C3.4(C32⋊C9), C3.1(He3.C3), SmallGroup(243,14)

Series: Derived Chief Lower central Upper central Jennings

C1C32 — C32.19He3
C1C3C32C33C32×C9 — C32.19He3
C1C3C32 — C32.19He3
C1C32C33 — C32.19He3
C1C32C33 — C32.19He3

Generators and relations for C32.19He3
 G = < a,b,c,d,e | a3=b3=d3=1, c3=b, e3=a, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=bcd-1, ede-1=b-1d >

3C3
3C3
3C3
3C32
3C32
3C32
3C9
3C9
3C9
9C9
9C9
9C9
3C3×C9
3C3×C9
3C3×C9
3C3×C9
3C3×C9
3C3×C9

Smallest permutation representation of C32.19He3
On 81 points
Generators in S81
(1 41 34)(2 42 35)(3 43 36)(4 44 28)(5 45 29)(6 37 30)(7 38 31)(8 39 32)(9 40 33)(10 81 26)(11 73 27)(12 74 19)(13 75 20)(14 76 21)(15 77 22)(16 78 23)(17 79 24)(18 80 25)(46 60 68)(47 61 69)(48 62 70)(49 63 71)(50 55 72)(51 56 64)(52 57 65)(53 58 66)(54 59 67)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 41 34)(2 42 35)(3 43 36)(4 44 28)(5 45 29)(6 37 30)(7 38 31)(8 39 32)(9 40 33)(10 78 20)(11 79 21)(12 80 22)(13 81 23)(14 73 24)(15 74 25)(16 75 26)(17 76 27)(18 77 19)(46 63 65)(47 55 66)(48 56 67)(49 57 68)(50 58 69)(51 59 70)(52 60 71)(53 61 72)(54 62 64)
(1 78 51 41 23 56 34 16 64)(2 21 65 42 14 52 35 76 57)(3 12 58 43 74 66 36 19 53)(4 81 54 44 26 59 28 10 67)(5 24 68 45 17 46 29 79 60)(6 15 61 37 77 69 30 22 47)(7 75 48 38 20 62 31 13 70)(8 27 71 39 11 49 32 73 63)(9 18 55 40 80 72 33 25 50)

G:=sub<Sym(81)| (1,41,34)(2,42,35)(3,43,36)(4,44,28)(5,45,29)(6,37,30)(7,38,31)(8,39,32)(9,40,33)(10,81,26)(11,73,27)(12,74,19)(13,75,20)(14,76,21)(15,77,22)(16,78,23)(17,79,24)(18,80,25)(46,60,68)(47,61,69)(48,62,70)(49,63,71)(50,55,72)(51,56,64)(52,57,65)(53,58,66)(54,59,67), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,41,34)(2,42,35)(3,43,36)(4,44,28)(5,45,29)(6,37,30)(7,38,31)(8,39,32)(9,40,33)(10,78,20)(11,79,21)(12,80,22)(13,81,23)(14,73,24)(15,74,25)(16,75,26)(17,76,27)(18,77,19)(46,63,65)(47,55,66)(48,56,67)(49,57,68)(50,58,69)(51,59,70)(52,60,71)(53,61,72)(54,62,64), (1,78,51,41,23,56,34,16,64)(2,21,65,42,14,52,35,76,57)(3,12,58,43,74,66,36,19,53)(4,81,54,44,26,59,28,10,67)(5,24,68,45,17,46,29,79,60)(6,15,61,37,77,69,30,22,47)(7,75,48,38,20,62,31,13,70)(8,27,71,39,11,49,32,73,63)(9,18,55,40,80,72,33,25,50)>;

G:=Group( (1,41,34)(2,42,35)(3,43,36)(4,44,28)(5,45,29)(6,37,30)(7,38,31)(8,39,32)(9,40,33)(10,81,26)(11,73,27)(12,74,19)(13,75,20)(14,76,21)(15,77,22)(16,78,23)(17,79,24)(18,80,25)(46,60,68)(47,61,69)(48,62,70)(49,63,71)(50,55,72)(51,56,64)(52,57,65)(53,58,66)(54,59,67), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,41,34)(2,42,35)(3,43,36)(4,44,28)(5,45,29)(6,37,30)(7,38,31)(8,39,32)(9,40,33)(10,78,20)(11,79,21)(12,80,22)(13,81,23)(14,73,24)(15,74,25)(16,75,26)(17,76,27)(18,77,19)(46,63,65)(47,55,66)(48,56,67)(49,57,68)(50,58,69)(51,59,70)(52,60,71)(53,61,72)(54,62,64), (1,78,51,41,23,56,34,16,64)(2,21,65,42,14,52,35,76,57)(3,12,58,43,74,66,36,19,53)(4,81,54,44,26,59,28,10,67)(5,24,68,45,17,46,29,79,60)(6,15,61,37,77,69,30,22,47)(7,75,48,38,20,62,31,13,70)(8,27,71,39,11,49,32,73,63)(9,18,55,40,80,72,33,25,50) );

G=PermutationGroup([[(1,41,34),(2,42,35),(3,43,36),(4,44,28),(5,45,29),(6,37,30),(7,38,31),(8,39,32),(9,40,33),(10,81,26),(11,73,27),(12,74,19),(13,75,20),(14,76,21),(15,77,22),(16,78,23),(17,79,24),(18,80,25),(46,60,68),(47,61,69),(48,62,70),(49,63,71),(50,55,72),(51,56,64),(52,57,65),(53,58,66),(54,59,67)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,41,34),(2,42,35),(3,43,36),(4,44,28),(5,45,29),(6,37,30),(7,38,31),(8,39,32),(9,40,33),(10,78,20),(11,79,21),(12,80,22),(13,81,23),(14,73,24),(15,74,25),(16,75,26),(17,76,27),(18,77,19),(46,63,65),(47,55,66),(48,56,67),(49,57,68),(50,58,69),(51,59,70),(52,60,71),(53,61,72),(54,62,64)], [(1,78,51,41,23,56,34,16,64),(2,21,65,42,14,52,35,76,57),(3,12,58,43,74,66,36,19,53),(4,81,54,44,26,59,28,10,67),(5,24,68,45,17,46,29,79,60),(6,15,61,37,77,69,30,22,47),(7,75,48,38,20,62,31,13,70),(8,27,71,39,11,49,32,73,63),(9,18,55,40,80,72,33,25,50)]])

C32.19He3 is a maximal subgroup of   (C3×C9)⋊C18  (C3×C9)⋊D9  (C3×C9)⋊5D9

51 conjugacy classes

class 1 3A···3H3I···3N9A···9R9S···9AJ
order13···33···39···99···9
size11···13···33···39···9

51 irreducible representations

dim1111333
type+
imageC1C3C3C9He33- 1+2He3.C3
kernelC32.19He3C32⋊C9C32×C9C3×C9C32C32C3
# reps162182418

Matrix representation of C32.19He3 in GL4(𝔽19) generated by

11000
0100
0010
0001
,
1000
0700
0070
0007
,
11000
0900
0090
0006
,
1000
0100
0070
00011
,
5000
0010
0001
0100
G:=sub<GL(4,GF(19))| [11,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,7,0,0,0,0,7,0,0,0,0,7],[11,0,0,0,0,9,0,0,0,0,9,0,0,0,0,6],[1,0,0,0,0,1,0,0,0,0,7,0,0,0,0,11],[5,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;

C32.19He3 in GAP, Magma, Sage, TeX

C_3^2._{19}{\rm He}_3
% in TeX

G:=Group("C3^2.19He3");
// GroupNames label

G:=SmallGroup(243,14);
// by ID

G=gap.SmallGroup(243,14);
# by ID

G:=PCGroup([5,-3,3,-3,3,-3,135,121,276,1352]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=d^3=1,c^3=b,e^3=a,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b*c*d^-1,e*d*e^-1=b^-1*d>;
// generators/relations

Export

Subgroup lattice of C32.19He3 in TeX

׿
×
𝔽